Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2143246

ABSTRACT

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.


Subject(s)
COVID-19 , Perylene , Humans , SARS-CoV-2/physiology , Nucleosides/pharmacology , RNA , Perylene/pharmacology , Antiviral Agents/pharmacology
2.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2090212

ABSTRACT

Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs.


Subject(s)
Antibody Formation , COVID-19 Vaccines , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation/genetics , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Vaccines/genetics , Viral Vaccines/pharmacology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Microarray Analysis
3.
Viruses ; 14(6)2022 05 25.
Article in English | MEDLINE | ID: covidwho-1903495

ABSTRACT

COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/complications , Humans , Nucleoproteins , Spike Glycoprotein, Coronavirus , Post-Acute COVID-19 Syndrome
4.
Biochimie ; 191: 27-32, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1347500

ABSTRACT

In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Catechin/analogs & derivatives , Mutation , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Animals , Catechin/pharmacology , Chlorocebus aethiops , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL